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Abstract

We extend the classical Hartwig’s triple reverse order law for the
Moore-Penrose inverse to closed-range bounded linear operators on
infinite dimensional Hilbert spaces.
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1 Introduction

If S is a semigroup with the unit 1, and if a,b € S are invertible, then the
equality (ab)~! = b~'a~! is called the reverse order law for the ordinary
inverse. It is well-known that the reverse order law does not hold for various
classes of generalized inverses.

In this paper we specialize our investigations to the Moore-Penrose in-
verse of a triple product of closed range bounded linear operators on Hilbert
spaces.

Let X,Y,Z be Hilbert spaces, and let £(X,Y) denote the set of all
bounded linear operators from X to Y. We abbreviate £(X) = L(X, X).
For A € £(X,Y) we denote by N (A) and R(A), respectively, the null-space
and the range of A. An operator B € L£(Y, X) is an inner inverse of A, if
ABA = A holds. In this case A is inner invertible, or relatively regular. It is
well-known that A is inner invertible if and only if R(A) is closed in Y. The
Moore-Penrose inverse of A € £(X,Y) is the operator X € L(Y, X) which
satisfies the Penrose equations

AXA=A, XAX =X, (AX)"=AX, (XA)*=XA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y. If
the Moore-Penrose inverse of A exists, then it is unique, and it is denoted
by Af.

The rule (AB)" = BTAT (in the case when A, B, AB have closed ranges)
does not hold in general. The equivalence conditions can be found in [7]
for complex matrices; see [8], [2] and [3] for closed range bounded linear
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operators on Hilbert spaces; see [9] for Moore-Penrose invertible elements in
rings and C*-algebras.
Notice that the reverse order rule attracts a significant attention (see [1],
[4], [6], [10], [11] and [13]).
The classical result of Hartwig [12] deals with the triple reverse order
law of the form
(ABC)' = C'BTAT, (1)

where A, B,C are matrices. Hartwig establishes several equivalent condi-
tions such that (1) holds, offering a very general proof of the main result.
However, one implication in [12] is not valid in infinite dimensional Hilbert
spaces, and thus we find it interesting to extend Hartwig’s proof in this
direction.

We start with some auxiliary results.

Lemma 1.1. Let A € L(X,Y) have a closed range. Then A has the matriz
decomposition with respect to the orthogonal decompositions of spaces X =

R(A*) & N(A) and Y = R(A) ® N (A*):
=[] LN - [ ]
where A, is invertible. Moreover,

A= ][RR -V ]

The proof of the previous result is straightforward.

Lemma 1.2. [6] Let A € L(X,Y) have a closed range. Let X1 and Xy be
closed and mutually orthogonal subspaces of X, such that X = X1® Xs. Let
Y1 and Yy be closed and mutually orthogonal subspaces of Y, such that Y =
Y1 ®Ys. Then the operator A has the following matriz representations with
respect to the orthogonal sums of subspaces X = X1 ® Xo = R(A*) & N (A),
andY =R(A) e NA*) =YY

@)
a=[5 vl R ] - L]

where D = A1 A} + A2 A5 maps R(A) into itself and D > 0. Also,

A*D-L 0
T 1
=4 o]
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<[4 3} [3)-12).

where D = ATA1 + A5 Az maps R(A*) into itself and D > 0. Also,

D—IA* D—IA*
T 1 2
A_[ . . ]

Here A; denotes different operators in any of these two cases.

Lemma 1.3. Let A € L(X,Y) be closed range operator and let Py; be or-
thogonal projection from'Y to closed subspace R(M) C R(A). Then A*Py A
has a closed range.

Proof. According to Lemma 1.1 and Lemma 1.2, operators A and Py have
the following forms:
A A 0| | R(AY) R R(M)
Ay 0|7 N(A) N(M) |’

(48] (5]~ [509 )

It is obvious that A*Py;A = (PpA)*PyA, and by using well-known fact
that for any bounded linear operator T" holds: T*T has closed range if and
only if T has closed range, it is enough to prove that Py;A is closed range
operator. From the form of Py A :

po= o o[ o] =10 o LN |- L300 ]

M 00| Ay 0 0 0] | NA N(M) |
we have R(PyA) = R(A1) = A1(R(A*)), which is closed because A; is
onto. Indeed, let us suppose A; is not onto; this means there is some y €
R(M) \ R(A1). Because of R(M) C R(A), there is some z € R(A*) such
that y = Ajx + Asz, provided that Aoz # 0. Therefore, R(M) 3y — Ajx =
Asx € N(M), and sum R(M) & N (M) is direct, so Agx = 0, which is
contradiction. Therefore, A1 is onto. ]



2 Main result

In this section we extend results due to Hartwig [12] concerning the triple
reverse order law for the Moore-Penrose inverse from complex matrices to
infinite dimensional settings.

In this section, let X;, ¢ = 1,2,3,4, be arbitrary Hilbert spaces, and
let A e L(X3,X4), B € L(X2,X3) and C € L(X1,X2) be bounded linear

operators with closed ranges. We use notations in the same way as in [12]:

M = ABC, X = C'BTAT,
E = AfA, F=cct,
P = EBF, Q = FB'E.

Recall that K € L(X) is EP, if K has a closed range, and KKT = KTK.
The main result is the following theorem.

Theorem 2.1. Let A, B,C be closed-range operators such that ABC' also
has a closed range. The following statements are equivalent:

(a) (ABC)t = CtBTAT;

(b) PQP =P, QPQ = Q, and both of A*APQ, and QPCC* are Hermi-
tian;

(¢) PQP =P, QPQ = Q, and both of A*APQ, and QPCC* are EP;
(d) PQP =P, R(A"AP) =R(Q"), R(CC*P*) = R(Q);
(e) (PQ)* =PQ, R(A*AP) = R(Q*), R(CC*P*) = R(Q).

Proof. The proof given by Hartwig stays valid for (a) < (b), (b) = (¢),
(¢c) = (d) and (d) = (e). The only case which does not hold in general, is
actually the implication (e) = (b), which involves properties of the matrix
rank. Thus, this part of the proof is not applicable to operators on infinite
dimensional Hilbert space.

To complete the proof, we will prove (¢) = (a) in a different way, using
properties of operator matrices.

Using Lemma 1.1 we conclude that the operator C' has the following
matrix form:

=[5 3] [ N |- 5]



where (' is invertible. Then

-1 *
i_ | G0 0 | RIO) R(C)
=% o[ den -1 Ne |
From Lemma 1.2 it follows that the operator B has the following matrix

form: ©) (B)
[ B B ] [ R(C R(B
=[5 0] e |- [ ]
where G = BB} + By Bj is invertible and positive in £(R(B)). Then

BiG™' 0
t_ | P
5= Big o]

From Lemma 1.2 it also follows that the operator A has the following

matrix form:
=[5 5L d |- LA |

where D = A; A} + Az Ab is invertible and positive in £(R(A)). Then

A*D-L 0
t_ 1
=45 o]

Let us find the expressions for the operators M, X, E, F, P and Q. It is
easy to find that:

AB1C; 0 My O
M—ABC’—[ 101 ! 0]—[ 01 0}, M, = A1 B, Ch;

—1 pxy—1 gx—1
X=C"B"A [ 0 0 0o ol
X, =0 'BfG A DY

I

A*D7'A; AxD7 A I0
_ AT A — 1 1 M4 2. - T —
E=A4lA |: A;DilAl A;DilAg :| » F co |: 0 0 :|

* )—1
P:EBF:[AlD A1 By 0]

ArD7'Mort 0]
A;D_lAlBl 0 ’

AsDMCTY 0
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BTG_lATD_lAl BikG_lATD_lAQ :| . |: C1X1A1 O1X14,

:T:
QFBE[ 0 0 0 0

It will be convinient to compute here matrix forms for some expressions
appearing in the rest of the proof:

PQ = ATD_lMleAl ATD_lMleAQ .
o A;DilMleAl A;DilMleAQ ’

_[oximet o]
e | ATMCTT 0]
ATAP = [ Asmyort oo )

ClMikD_lAl CleD_lAQ :| )
0 0 ’

CC*P* = {

(PQ)2_ ATD71M1X1M1X1A1 ATD71M1X1M1X1A2
o A;D_lMleMleAl A;D_lMleMleAQ )

Now, we will find equivalent expressions for the conditions (a) and (e)
in the terms of the components of the operators A, B and C.

(a) : This is equivalent to (4;B;C1)! = Clei‘G_lATD_l, or MlJr = X;.

(e) : This is equivalent to the following three expressions:
(e1) & AID N M X1)?A; = AAD'M X A;,  foralli,j € {1,2};

At 0N ArXiCr 0]\

(¢2) & R<[A§M101‘1 o) =R\ axrer o)

(6 3) = R ([ ClMikDflAl ClMikDflAQ :|> - R <|: C1 X141 Ci1 XA, :|>
' 0 0 - 0 0 .

Recall that we prove the implication (e) = (a).

Now, if we premultiply (e.1) by A;, and use summation over i = 1,2
we yield (M X1)?A; = M1 X, A;, for j = 1,2. If we now postmultiply last
expression by A;f and add them, we have (M;X;)? = M;X;. Therefore:

(6.1) — (M1X1)2 =M X;. (2)



On the other hand, (e.2) is equivalent to:
R(AIMCTY) = R(AIXTCY), i=1,2.
Again, if A; acts on both sides, and we add them, we obtain:
ROMLCTY) = R(XGCY).

Hence, we have
R(M:) = R(X7),

which implies M; M} = X]X;. Therefore,

(e.2) = MM} = X[ X;.
Let us now write (e.3) as:
N AiDIM O 0 Y ATX{CT 0O
AsDIMLCF 0 ALXiCr 0| )
Notice that
N A’{D‘lMle 0 B u1 . ATD_IMlcT 0 U1 B
A;l)_l]\flci< 0 o uy | A;D_lMlcik 0 U9 o

and we conclude:

* )—1 *
/\/([ AT MG D = (N(ATDT M CHN(AD™ Vi) )N (C7),

ASD-MCE 0
which is further equal (easy to see) to
N(M,CY) & N(C™).
With a little effort we find

N([A;XTC’;‘ OD = (MAIXTCN NN (45X7C) ) @ N(CT) =
= N(X{CH o N(C).

Hence, the condition (e.3) implies:

N(MCT) = N(X{CT),



which is the same as R(C1 M) = R(C1X1), or R(M{) = R(X1), or even
further: MfMl = XlX}L.

Since we intend to prove (e) = (a), it is enough to prove the following
implication:

(anx0)? =Xy, M| = X[X, MMy = X x]) = M = X,
The following completes the proof:

M, = M X\ X]=MX\X] XX =Mix, My M{XT =
= M XM X X|M{x] =M x, xImixT =
= M xT = xTx, xT = x1].
For the sake of completeness, we remark that operators A*AP(Q and

QPCC* from part (c) of our Theorem have closed ranges. It immediately
follows from Lemma 1.3 because:

A*APQ = A"MM'A = A*PrpA, QPCC* = CMTMC* = CPr(uC*.
O
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